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The program SEAL is suited to describe the electrostatic, steric, hydrophobic, and hydrogen
bond donor and acceptor similarity of different molecules in a quantitative manner. Similarity
scores AF can be calculated for pairs of molecules, using either a certain molecular property or
a sum of weighted properties. Alternatively, their mutual similarity can be derived from
distances d or covariances c between SEAL-based property fields that are calculated in a regular
grid. For a set of N chemically related molecules, such values form an N × N similarity matrix
which can be correlated with biological activities, using either regression analysis and an
appropriate variable selection procedure or partial least-squares (PLS) analysis. For the Cramer
steroid data set, the test set predictivities (r2

pred ) 0.53-0.84) of different PLS models, based
on a weighted sum of molecular properties, are superior to published results of CoMFA and
CoMSIA studies (r2

pred ) 0.31-0.40), regardless of whether a common alignment or individual,
pairwise alignments of all molecules are used in the calculation of the similarity matrices.
Training and test set selections have a significant influence on the external predictivities of
the models. Although the SEAL similarity score between two molecules is a single number,
its value is based on the 3D properties of both molecules. The term 3D quantitative similarity-
activity analyses (3D QSiAR) is proposed for approaches which correlate 3D structure-derived
similarity matrices with biological activities.

Introduction
Rational approaches in medicinal chemistry are based

on the consideration of relationships between chemical
structures and biological activities. Lead structures,
derived from natural products, biological concepts, or
simply from screening hits, are structurally modified to
optimize their biological activity, selectivity, and phar-
macokinetic properties and to minimize their toxic and
other side effects. To this end, structural elements are
removed, added, or changed, e.g., by an isosteric re-
placement of atoms or groups, the variation of chain
lengths, the exchange of linkers, the rigidization of a
flexible molecule by introduction of bulky groups or
additional ring systems, etc.1-3 The underlying hypoth-
esis of all structure-activity relationships is that similar
molecules exert similar biological activities in a qualita-
tive sense, i.e., in their mode of action, as well as
quantitatively. Several dedicated investigations have
provided evidence that the different structural elements
within a molecule most often contribute in an additive
manner to relative biological activities, expressed in a
logarithmic scale. This additivity is based on the
relationship between the free energies of ligand binding,
∆G, and the equilibrium constants of ligand binding to
a protein, K (eq 1; ∆H ) enthalpy and ∆S ) entropy
contributions). If the free energy ∆G of the ligand-
protein interaction is an additive function of all indi-
vidual interactions of the different parts of a ligand with
its binding site, then also log K values are an additive

molecular property.

In quantitative structure-activity relationships
(QSAR), biological activities are described either in
terms of indicator variables that encode the presence
or absence of certain chemical groups (Free-Wilson
analysis) or in terms of physicochemical parameters
(Hansch analysis).4-8 Hansch analysis will predict
similar activities of two molecules if they are similar in
their physicochemical properties. It will predict differ-
ent activities if they are dissimilar, with the only
exception of nonlinear dependence on a certain physi-
cochemical property; this dependence is frequently
observed if transport and distribution in the biological
system play an additional role, for example, in cell
culture or animal studies.4,5

Three-dimensional quantitative structure-activity
relationships (3D QSAR), especially comparative mo-
lecular field analysis (CoMFA),9 correlate binding af-
finities and other biological activities with steric, elec-
trostatic, and other 3D fields of the molecules. For this
purpose, electronic properties of all compounds within
a chemically related series are calculated and 3D
structures are generated. A pharmacophore hypothesis
is derived, and all molecules are superimposed in their
hypothetical bioactive conformations to achieve a mu-
tual alignment. A regular lattice is placed around the
superimposed molecules in such a manner that the
resulting box is in all directions several Ångstroms
larger than the combined volume of all molecules. Then,
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different molecular fields are calculated at each grid
point of the lattice; the default distance between the grid
points is 2 Å. Probe atoms or groups, e.g., a neutral
carbon atom (probe for van der Waals interactions), a
charged atom (probe for electrostatic interactions), a
hydrogen bond donor or acceptor (probes for hydrogen
bond interactions), are used to calculate interaction
energy values at every grid point, for each molecule; the
mathematical functions used for van der Waals and
electrostatic interactions are the Lennard-Jones and
Coulomb potentials, respectively.

Afterward, the data set is split into a training set for
which a CoMFA model is derived and a test set to
determine the external predictivity of the resulting
model. In the next step, the molecular fields are
correlated with the biological activities, using partial
least-squares (PLS) analysis,10,11 with or without vari-
able selection. Theory, methods, and applications, as
well as recent advances of 3D QSAR methods, have been
reviewed (e.g., refs 12, 13).

Due to the relationships between molecular similari-
ties and the corresponding variations in biological
potencies, different quantitative expressions of chemical
similarities have been investigated (e.g., refs 14-16).
A common similarity measure is the Tanimoto coef-
ficient T (eq 2) which compares certain features A of
molecule 1 and B of molecule 2 with the features C that
are common to both molecules. By its definition, T
equals unity if both molecules are identical and its value
is zero if they have nothing in common.

Indices which describe the electronic similarity of two
molecules (A and B) are the Carbo index RAB

17 and the
Hodgkin index HAB,18 based on the electron densities
FA and FB of both molecules. In a more general form,
any molecular property P can be used to calculate these
similarity indices (eqs 3 and 4). As compared to the
Hodgkin index, the Carbo index is more sensitive to the
shape of the molecules than to the actual values of the
corresponding property of both molecules. Modifications
of these indices have been proposed to calculate elec-
trostatic similarity values from grid-based fields (e.g.,
ref 19).

A different approach for the description of the simi-
larity of molecules was chosen by Kearsley and Smith
in their program SEAL.20 SEAL defines a “similarity
score” AF between two molecules (A and B) in any
relative orientation to each other (eq 5); rij is the
distance between atoms i and j, R defines the distance
dependence, wE, wS, etc., are user-attributed values to
give different weights to electrostatic, steric, and other
properties, qi and qj are partial charges at the atoms i
(molecule A) and j (molecule B), and vi and vj are

arbitrary powers (default ) 3) of the van der Waals radii
of atoms i (molecule A) and j (molecule B). Any other
property, e.g., atom- or group-based hydrophobicity
values or hydrogen bond donor and acceptor properties,
may be added to the definition of wij.21,22

SEAL similarity scores that are based on weighted
combinations of steric, electrostatic, and hydrophobic
properties have been used to perform an objective and
automated alignment of molecules, starting from several
random orientations of two molecules relative to each
other and reorienting one molecule with respect to the
other one to achieve the largest mutual similarity score
AF (eq 5).21 The advantage of this approach, as com-
pared to several other methods, is its objective charac-
ter. Despite the atom-based calculation procedure, the
resulting alignment does not depend on the exact
superposition of certain atoms. The method has been
adapted to a flexible multiple alignment with simulta-
neous 3D structure optimization.21,22 The calculations
can be accelerated by the use of “united atoms”, e.g., by
combining all hydrogen atoms with their adjacent
“heavy” atoms or by creating even larger “superatoms”
(e.g., the center of an aromatic ring instead of all
individual ring atoms).22 The version used in this
investigation considers, in addition to electrostatic,
steric, and hydrophobic properties, also hydrogen bond
donor and acceptor positions in the alignment of the
molecules.22

The Lennard-Jones and Coulomb potentials that are
typically used in CoMFA studies create relatively “hard”
fields. They change their values from close to zero to
very large numbers within a few tenths of an Ångstrom,
i.e., within a small fraction of the commonly used grid
distance of 2 Å. Cutoff values have to be defined to
avoid values which would approach infinity at the atom
centers. Significantly different CoMFA results are
sometimes obtained after a shift or rotation of the box
in which the fields are calculated, especially if the
default grid distance of 2 Å is used and PLS analysis is
performed with a variable selection procedure.23 Sev-
eral modifications of the CoMFA method have been
proposed to avoid such problems.13,23-26

In a recently developed 3D QSAR method, compara-
tive molecular similarity indices analysis (CoMSIA),27,28

SEAL functions (eq 5) were used to calculate similarity
fields of the molecules to different probe atoms and
groups, in the same manner as CoMFA fields are
calculated. Since the CoMSIA fields are based on
Gaussian potentials, they are much “softer” than the
CoMFA functions. In addition, they are good ap-
proximations to the cutoff-corrected Lennard-Jones and
Coulomb potentials. Correspondingly, CoMSIA fields
produce smoother contour maps than CoMFA fields.27

Although not yet confirmed, it is to be expected that
CoMSIA results are more or less invariant to variations
of the box orientation.

The principle that QSARs are based on similarity
hypotheses29 seems to be trivial. However, so far only
a few investigations have been performed on the rela-
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tionships between molecular similarities and biological
activities. In 1991, Rum and Herndon used N × N
similarity matrices (N ) number of compounds), derived
from 2D topological descriptors, and stepwise regression
analysis to correlate several columns of these matrices
with biological activities.30 Two years later, Good and
Richards31,32 performed systematic investigations to
correlate 3D electronic similarities of molecules with
their biological activities.33 In this approach, first 3D
structures of all molecules are generated and aligned
in space, as in CoMFA studies. Then, similarity values
between all pairs of molecules are calculated, using
either the Carbo or the Hodgkin electrostatic potential
similarity indices (eqs 3 and 4). Alternatively, Gaussian
approximations of the Carbo and Hodgkin indices are
used. In the last step, the resulting N × N similarity
matrices are correlated with the biological activities of
the molecules, using either neural networks31 or PLS
analysis.32 In PLS analysis, better results are obtained
after the elimination of irrelevant variables (i.e., vari-
ables not contributing to prediction) by application of
the variable selection program GOLPE.34

At about the same time, Kubinyi used N × N lipo-
philicity distance matrices D (dij ) | log Pi - log Pj |;
P ) n-octanol/water partition coefficient) to describe
linear and nonlinear lipophilicity-activity relationships
in a quantitative manner.4 In fit and internal predic-
tivity, the resulting models are as good as those using
parabolic or bilinear functions.4,29 Martin et al. con-
firmed the suitability of distance matrices D for the
quantitative description of various nonlinear property-
property relationships.35 If X is the original N × M
matrix of explanatory data (N rows, M columns), then
all xik values are normalized (i.e., mean-value-centered
and standardized) before, column by column. After-
ward, every column has a mean value of 0 and a
standard deviation of 1. An Euclidean distance matrix
D is calculated using eq 6 (dij ) distance between two
molecules; M ) number of physicochemical properties;
xik and xjk ) properties k of two different molecules);
alternatively, covariance matrices C (eq 7) can be used
to derive quantitative structure-activity models.29

A detailed investigation of several published data sets
showed that Euclidean distance matrices D as well as
covariance matrices C are well-suited to derive quan-
titative structure-activity relationships, starting from
one or several physicochemical properties.29 The cor-
relation of one or very few columns of such matrices with
the biological activity values produces quantitative
models as good as or even better than classical Hansch
regression models. In the case of nonlinear relation-
ships between certain physicochemical properties and
biological activities, distance matrices D are clearly
superior to covariance matrices C.29

So far, similarity matrices were generated from 2D
properties or from electrostatic properties, using Carbo

and Hodgkin indices (e.g., refs 30-32, 36). The aim of
this investigation is to describe the 3D similarity of
molecules, using SEAL scores or SEAL similarity fields,
and to derive 3D quantitative similarity-activity rela-
tionships (3D QSiAR) from N × N similarity matrices
to prove whether such models have certain advantages
as compared to other approaches. A new, important
aspect of the current investigation is the concept of
pairwise superpositions instead of a common alignment
of all molecules.

The Cramer steroids (Table 1)11 are chosen as a
practical example. Although this data set is far from
being perfectly suited for structure-activity studies, it
has become a benchmark to investigate scope and
limitations of new methods.37 Special emphasis was
given to a correct input of structures38 and biological
data, to a proper validation of all results, and to the
prediction of the biological activities of different test
sets.

Methods

Data Set. The structures of 31 steroids and their cortico-
steroid binding globulin (CBG) affinities were taken from ref
11; wrong structures were corrected according to refs 37, 38.
Biological data are given in Table 1.

Geometries and Electronic Properties. First, 2D struc-
tures were sketched, using the program ISIS/Draw 2.1,39 and
controlled for correct stereochemistry. These were converted
to 3D structures with CORINA, version 1.8.40 Partial atomic
charges were assigned using the AM1 method as implemented
in MOPAC 7.41 Electrostatic and hydrophobic properties were
calculated from partial atomic charges and atomic hydropho-
bicities, respectively.21,42 van der Waals radii were raised to

Table 1. Structures and CBG Affinities of the Cramer Steroid
Data Set11,37,38

no. steroid log K CBG

1 aldosterone 6.279
2 androstanediol 5.000
3 androstenediol 5.000
4 androstenedione 5.763
5 androsterone 5.613
6 corticosterone 7.881
7 cortisol 7.881
8 cortisone 6.892
9 dehydroepiandrosterone 5.000

10 deoxycorticosterone 7.653
11 deoxycortisol 7.881
12 dihydrotestosterone 5.919
13 estradiol 5.000
14 estriol 5.000
15 estrone 5.000
16 etiocholanolone 5.255
17 pregnenolone 5.255
18 17-hydroxypregnenolone 5.000
19 progesterone 7.380
20 17-hydroxyprogesterone 7.740
21 testosterone 6.724
22 prednisolone 7.512
23 cortisol 21-acetate 7.553
24 pregn-4-ene-3,11,20-trione 6.779
25 epicorticosterone 7.200
26 19-nortestosterone 6.144
27 16R,17-dihydroxypregn-4-ene-3,20-dione 6.247
28 16R-methylpregn-4-ene-3,20-dione 7.120
29 10-norprogesterone 6.817
30 11â,17,21-trihydroxy-2R-methylpregn-4-

ene-3,20-dione
7.688

31 11â,17,21-trihydroxy-2R-methyl-9R-
fluoropregn-4-ene-3,20-dione

5.797

dij ) x∑
k)1

k)M

(xik - xjk)
2 (6)

cij ) ∑
k)1

k)M

xik‚xjk (7)
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the third power to compute steric properties.20,21 Hypothetical
positions of hydrogen bond partners were generated in favor-
able geometries around the different donor and acceptor groups
of the molecules, to determine their hydrogen bond donor and
acceptor similarity.22

Alignments and Calculation of SEAL Similarity Scores.
Generally, two kinds of alignment were performed: a biased
one, based on a least-squares atom-by-atom match, and an
objective one, using a SEAL-derived scoring function.

(a) In the first case, the rigid alignment, all 31 steroids were
superimposed onto an unsubstituted steroid template (gener-
ated, consistent with the other compounds, via ISIS/Draw and
CORINA), using an atom-by-atom least-squares fit as imple-
mented in the SYBYL FIT option.43 Following the ordinary
steroid nomenclature, the carbons 5, 10, 13, and 14 (the atoms
common to the A/B and C/D ring systems) were selected as fit
centers. This relative orientation of all molecules was not
changed in the subsequent analyses; different SEAL similarity
scores (see below) were calculated in these orientations to
generate the corresponding N × N similarity matrices (cf.
Tables 4 and 5).

(b) In the second case, the SEAL alignments, only pairwise
alignments were performed. One of each pair of structures
was taken as a template for the superposition; for the second
molecule of each couple, 50 start orientations (out of a much
larger number of random start orientations), showing already
a good overlap of hydrophobic and hydrophilic regions with
corresponding regions of the reference molecule, were selected
automatically. Then all-properties SEAL similarity scores
AF (eq 5) were calculated for each start orientation, using
default parameters for the distance dependence R, the weights
for the hydrophobic, electronic, and steric contributions, wL,
wE, and wS,21 and the weight for hydrogen bond partner
positions, wH.22 These default parameters resulted from an
independent calibration, derived from 190 ligand pairs which
mutually bind to the same protein. The experimental align-
ments of all ligand pairs could be reproduced in this investiga-
tion with an accuracy below 0.7 Å in about 33%, below 1.0 Å
in 51%, and below 2.0 Å in nearly 90% of the cases.22 These
deviations have to be compared with the inherent accuracy
limit of about 0.7 Å for the superposition of two experimentally
determined ligand-protein complexes (for more details, see
refs 21, 22).

Guided by the SEAL score AF, we optimized the superposi-
tions of the steroids until no further improvements in these
values could be achieved.21,22 Minor variations of the different
weights did not significantly influence the SEAL similarity
scores; on the other hand, single properties (e.g., hydrophobic
or steric vs electronic or hydrogen bond properties) produced
different alignments of certain pairs of steroids (see Results
and Discussion).

All AF values of the N × (N + 1)/2 ) 496 molecule pairs (for
control purposes also the self-to-self alignments of identical
molecules were performed) were normalized to AF(max) ) 1,21

in the same manner as the Carbo index (eq 3). Symmetrical
N × N similarity matrices S were derived from different SEAL
scores.

SEAL Similarity Fields and Calculation of Distance
and Covariance Matrices. For both kinds of alignments,
hydrophobic, steric, and electrostatic properties as well as their
weighted combination (including also hydrogen bond donor and
acceptor terms) were used to generate SEAL similarity fields
of individual molecules as described in ref 27. Hydrogens were
united with their heavy atoms. A box size of 24 × 24 × 24 Å
was chosen to allow for a rotation of the steroids within the
box, without the need to change the dimensions of the box.
With a grid distance of 1 Å, 25 × 25 × 25 values were
calculated for each field and all steroids; the resulting 15 625
values of the different molecular fields were concatenated into
single vectors and subsequently normalized (i.e., their means
were set to 0 and their standard deviations to 1). N × N
distance matrices D and covariance matrices C of the different
SEAL fields were computed from these field vectors, using eqs
6 and 7.

Box Rotation. As mentioned before, a marked dependence
of CoMFA results on the orientation of the grid box has been
observed in some studies.23 To investigate the sensitivity of
the field-based SEAL similarity approach, all pairs of steroids
were rotated by 30°, 60°, ... 150° around all axes simulta-
neously. Since this procedure changed the orientation of each
atom with respect to the surrounding grid points, no indepen-
dent translations were performed.

Regression Analysis with Variable Selection. All
regression models with up to three variables were investigated,
and Fisher F values were used as the criterion for the “best”
models. This statistical parameter especially favors small
numbers of independent variables (eq 8; r ) multiple correla-
tion coefficient; n ) number of compounds; k ) number of
independent variables); thus, it significantly reduces the risk
of chance correlations, as compared to a standard deviation
criterion. In addition, the significance of all variables and the
mutual intercorrelations within the X variables were checked
for each model.

Although there are highly efficient variable selection pro-
cedures, based on evolutionary44 and genetic algorithms,45

systematic search is extremely fast if only a few variables are
involved (e.g, ref 46). In the current investigation (31 X
variables), the F values of all 4991 models with up to three
different X variables are calculated on a PC within a few
seconds, using eq 9 (rY,(X1,...Xm) ) multiple correlation coefficient;
rYX ) vector of rYXi correlation coefficients; RXX ) matrix of
rXi,Xj correlation coefficients).47

Cross-Validation. Cross-validation procedures eliminate
one or several data sets (i.e., compounds) from the training
set, derive a quantitative model from the remaining objects,
and predict the activity for the one or several objects which
were not included in the derivation of the model.48-50 The
cross-validated squared correlation coefficient, Q2, and the
standard deviation of the predictions, sPRESS, are calculated
from the predictive residual sum of squares, PRESS ) Σ(ypred

- yobs)2, in the same manner as r2 and s values are calculated
from the unexplained variance Σ(ycalc - yobs)2, to describe
the quality of fit of the models. In the leave-one-out proce-
dure, only one object is eliminated at a time and the process
is repeated until all objects have been eliminated once and
only once. For larger data sets, the elimination of several
objects at a time, randomly or in a systematic manner, is
recommended. Throughout this investigation, only leave-
one-out cross-validation was performed to derive a measure
of the internal predictivity of the models, within the training
set.

y Randomization. As a much more reliable criterion for
the risk of chance correlations, the affinity values of the
steroids were re-ordered in a random manner (y scrambling),
to determine the percentage of chance correlations that are
as good as or even better than the best correlations found for
the y values in their correct order; 100 different randomization
runs were performed routinely, and the best models were
individually derived for each randomization by systematic
search, including up to three columns of the N × N matrices
in the regression models. In some cases, even 1000 random-
izations were performed to prove that 100 randomizations give
representative results. No attempt was made to eliminate
y-scrambled data sets with (fortuitous) high correlations
between the real, original y values and the randomized y
values.

Test Set Predictions. In the steroid data set, most often
the steroids 1-21 are chosen as the training set and steroids
22-31 as the test set to determine the external predictivity
of the models, expressed by r2

pred and spred.11 In a prior
investigation, also another training set, steroids 1-12 and

F )
r2(n - k - 1)

k(1 - r2)
(8)

rY,(X1,...,Xm) ) (rYX
T RXX

-1 rYX)1/2 (9)
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23-31, was selected; compounds 13-22 served as the test
set.29 Both training and test set selections, called training
and test sets I and II, respectively, are considered in this
study.

PLS Analyses. Partial least-squares (PLS) analyses of the
different data sets were performed, using the cross-validated
sPRESS value as the criterion for the number of significant
vectors; up to five latent variables were calculated in each PLS
analysis, but only up to three latent variables were allowed
in the final model. Starting with one vector, the number of
latent variables was derived from the first minimum of sPRESS.
In most cases, only one or two latent variables proved to be
significant. For better comparison with the regression analy-
ses, variables were scaled in the PLS fit and rescaled in the
cross-validation runs.

Results and Discussion

The corticosteroid binding globulin affinities of the
Cramer steroid data set (Table 1)11 have been investi-
gated by several groups, using different methods. Un-
fortunately, many of these studies suffer from incorrect
structures and/or biological data in the investigations
and the publications (for a recent review, see ref 37).
Thus, no exact comparisons of published results with
this study, obtained from correct structures and data,
are possible. Nevertheless, a rough comparison shows
that squared correlation coefficients r2 in the range of
0.90-0.95 and standard deviations s around 0.3-0.4 are
observed for the fit of steroids 1-21; for internal
predictivity, Q2 values around 0.6-0.7 and sPRESS values
around 0.7-0.8 result. However, predictions of the test
set (steroids 22-31) yielded only r2

pred values in the
range of 0.3-0.4 (Table 2). This poor external predic-
tivity can be attributed, at least in part, to the fact that
several structural features within this test set, i.e., 2R-
methyl, 9R-fluorine, 16R-methyl, and 21-acetoxy groups,
are not included in the training set.

An earlier analysis of the steroid data showed that
the different A/B ring junctions of the steroid skeletons
are sufficient to explain the structure-activity relation-
ships.29 If a one-parameter Free-Wilson equation is
derived for the training set (eq 10; the term 4,5-CdC-
indicates the presence or absence of a cycloaliphatic 4,5-
double bond in ring A of the steroids), the fit (r and s
values) is worse than in the CoMFA and CoMSIA
analyses (Table 2); however, the internal predictivity
of this model, expressed by Q2, is as good as the
corresponding value of different CoMFA and other 3D
QSAR studies.

The test set predictivity of eq 10 is even better than
the predictivity of published CoMFA and CoMSIA
analyses (Table 2): n ) 10; r2

pred ) 0.477; spred ) 0.733.
However, it is still relatively poor. In addition to the
lack of certain structural features in the training set,
weakly active compounds are somewhat under-repre-
sented in the test set. A better selection with respect
to both problems seems to be, e.g., the choice of steroids
1-12 and 23-31 as the training set and steroids 13-
22 as the test set (eq 11).29 Despite a worse fit as
compared to eq 10, the relevance of this model is proven
by its excellent test set predictivity (compounds 13-
22): n ) 10; r2

pred ) 0.909; spred ) 0.406.

Due to the fact that rigid alignments11,27 and SEAL-
derived alignments27 were used in the CoMFA and
CoMSIA analyses of this data set, both types of align-
ments were also performed in this investigation. The
SEAL similarity scores of the self-to-self alignments can
be taken as a criterion for the quality of the achieved
superpositions. For all 31 steroids and both alignment
procedures, the maximum values of 1.0000 were ob-
served, as expected. For the pairwise alignments, the
SEAL similarity scores depend on the differences in the
structures, with a maximum for the pair 30/31 (differ
only by a hydrogen/fluorine exchange in position 9R),
AF ) 0.9959, and a minimum for the pair 15/23, AF )
0.7995 (compare Table 3). With only one exception,
where the similarity score was slightly inferior, all
SEAL-based objective alignments were better than or
at least as good as the rigid alignments, indicating the
efficiency of the automated SEAL-based alignments.
Surprisingly, out of the N × (N + 1)/2 ) 496 different
superpositions of the 31 steroids (weighted all proper-
ties), 79 pairs showed a head-to-tail alignment, i.e., ring
D of one steroid was superimposed on ring A of the other
steroid and ring A on ring D. This might be taken as
an indication that some steroids, e.g. 9, a 3-hydroxy-
17-keto steroid, and 12, a 3-keto-17-hydroxy steroid, are
more closely related if identical functional groups are
on top of each other than if the steroid skeletons are
superimposed without a consideration of the differences
in the hydrogen bond donor and acceptor functionalities
(Figure 1). Fortunately, the similarity scores of these
alignments do not differ too much from the best regular
alignments. Thus, even if such head-to-tail alignments
should be an artifact, this will not have a significant
influence on the obtained results.

The observed head-to-tail superpositions demonstrate
the importance of a weighted all-properties similarity
score in the alignments; they are not obtained if only
hydrophobic or steric properties are used in the align-

Table 2. CoMFA11 and CoMSIA Results27 for the CBG
Affinities (Table 1; training set, steroids 1-21; test set, steroids
22-31

rigid alignmenta,b SEAL alignmenta
analysis/statistical

parameters CoMFAb CoMSIAa CoMFAa CoMSIAa

fit (training set):
r2 0.897 0.941 0.947 0.937
s 0.397 0.320 0.303 0.330

cross-validation
(training set):

Q2 0.662 0.662 0.598 0.665
sPRESS 0.719 0.763 0.832 0.759

external predictivity
(test set):

r2
pred 0.309c nd 0.36 0.40

a Common alignment of all molecules.27 b Reference 11. c The
value of 0.65, given by Cramer et al.,11 is wrong.27,29

log K ) 2.022((0.52) 4,5-CdC- + 5.186((0.36)

(10)

(n ) 21; r ) 0.882; s ) 0.568; F ) 66.41;
Q2 ) 0.726; sPRESS ) 0.630)

log K )
1.667((0.75) 4,5-CdC- + 5.306((0.65) (11)

(n ) 21; r ) 0.731; s ) 0.697; F ) 21.82;
Q2 ) 0.454; sPRESS ) 0.754)
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ments. Whereas no experimental evidence for reverse
binding modes of steroids is available (the 3D structure
of the ligand-binding domain of the estrogen receptor
has been published only recently51), bottom-up-top-down
binding modes of some steroids to an antibody fragment
have been observed.52,53

All alignments were based on the weighted combina-
tion of steric, electrostatic, hydrophobic, and hydrogen
bond donor and acceptor properties. For the generation
of the N × N similarity matrices S, pairwise SEAL
scores of the steroids were also calculated from indi-
vidual properties. Thus, for the rigid and the SEAL
alignments, four different N × N matrices result in both
series: hydrophobic, electrostatic, steric, and weighted
hydrophobic/electrostatic/steric/donor/acceptor (all prop-
erties) similarity matrices.

Regression analyses were performed to correlate
individual columns of the similarity matrices S with
biological activities. To avoid chance correlations, the
upper number of included variables (i.e., columns of the
similarity matrices) in the regression models was re-
stricted to three, the Fisher F value (eq 8) was used as
the criterion to choose the best models, and the final
models were checked for the significance of all regres-
sion variables and their mutual intercorrelations. A
systematic search procedure (see Methods) was applied;
in the training and test set selections, only columns of
the similarity matrices S, for which the corresponding
steroids were included in the training set, were also
considered in the models. Typical models for the whole
data set (steroids 1-31) and the training sets I (1-21)
and II (1-12 and 23-31) are presented in eqs 12a-c
(rigid alignment; weighted all properties similarity

matrix) and 13a-c (pairwise SEAL alignments; weighted
all-properties similarity matrix; the values of the X
variables of eqs 13a-c are listed in Table 3). The X
variables correspond to columns of the similarity matrix
S, i.e., X-6 is the corticosterone similarity vector of all
steroids, X-7 is the cortisol similarity vector, and so on.

Rigid alignment, all compounds:

Training set I:

Test set I: n ) 10; r2
pred ) 0.454; spred ) 0.748

Training set II:

Test set II: n ) 10; r2
pred ) 0.750; spred ) 0.674

Pairwise SEAL alignments, all compounds:

Training set I:

Test set I: n ) 10; r2
pred ) 0.598; spred ) 0.642

Training set II:

Test set II: n ) 10; r2
pred ) 0.784; spred ) 0.626

What do eqs 12 and 13 tell us, in terms of structural
similarity? Equation 12, starting from a rigid alignment
and including all 31 steroids, shows that the similarity
of the steroids to corticosterone, expressed by the
similarity vector X-6, determines the binding affinities
to CBG. If only the steroids of the training set I are
considered, the similarity to cortisol, X-7, gives a slightly
better model than X-6; using X-6, r ) 0.870, F ) 59.18,
Q2 ) 0.711, and r2

pred ) 0.553 result; thus, for external
predictivity the X-6 model is even slightly better than
the X-7 model. For training and test sets II, the fit and

Table 3. Log K Values (CBG affinities) and Selected
Similarity Vectors (X variables) of a Typical N × N Similarity
Matrix S (SEAL alignment, all-properties similarity scores; eqs
13a-c)

no. log K X-7 X-10 X-17 X-19 X-22 X-23

1 6.279 0.9394 0.9601 0.8914 0.9181 0.9385 0.8723
2 5.000 0.8606 0.8905 0.9324 0.8947 0.8565 0.8205
3 5.000 0.8591 0.8862 0.9398 0.8888 0.8547 0.8195
4 5.763 0.8661 0.8977 0.9036 0.9223 0.8645 0.8456
5 5.613 0.8366 0.8693 0.8921 0.8929 0.8424 0.8382
6 7.881 0.9492 0.9784 0.8921 0.9404 0.9575 0.9062
7 7.881 1.0000 0.9344 0.8648 0.8965 0.9930 0.9308
8 6.892 0.9611 0.9460 0.8642 0.9080 0.9696 0.9149
9 5.000 0.8491 0.8815 0.9386 0.9029 0.8536 0.8309

10 7.653 0.9344 1.0000 0.9140 0.9624 0.9425 0.8863
11 7.881 0.9801 0.9554 0.8850 0.9166 0.9806 0.9180
12 5.919 0.8873 0.9282 0.9112 0.9360 0.8916 0.8597
13 5.000 0.8375 0.8721 0.8936 0.8704 0.8364 0.8000
14 5.000 0.8453 0.8515 0.8589 0.8444 0.8479 0.8075
15 5.000 0.8203 0.8698 0.8963 0.8957 0.8218 0.7995
16 5.255 0.8143 0.8292 0.8570 0.8505 0.8186 0.8139
17 5.255 0.8648 0.9140 1.0000 0.9459 0.8609 0.8431
18 5.000 0.9030 0.8789 0.9586 0.9081 0.9001 0.8851
19 7.380 0.8965 0.9624 0.9459 1.0000 0.9041 0.8914
20 7.740 0.9462 0.9183 0.9145 0.9513 0.9458 0.9259
21 6.724 0.8935 0.9156 0.8968 0.9278 0.8918 0.8590
22 7.512 0.9930 0.9425 0.8609 0.9041 1.0000 0.9393
23 7.553 0.9308 0.8863 0.8431 0.8914 0.9393 1.0000
24 6.779 0.8943 0.9333 0.9366 0.9703 0.8929 0.8743
25 7.200 0.9291 0.9728 0.8883 0.9360 0.9375 0.8817
26 6.144 0.8798 0.9215 0.9109 0.9316 0.8875 0.8616
27 6.247 0.9199 0.8591 0.8526 0.8883 0.9205 0.9014
28 7.120 0.9016 0.9483 0.9457 0.9848 0.9008 0.8803
29 6.817 0.8891 0.9563 0.9436 0.9934 0.8974 0.8854
30 7.688 0.9820 0.9428 0.8642 0.9050 0.9919 0.9383
31 5.797 0.9783 0.9372 0.8606 0.8997 0.9882 0.9351

log K ) 15.56((3.92) X-6 -7.494((3.51) (12a)

(n ) 31; r ) 0.833; s ) 0.608; F ) 65.80;
Q2 ) 0.658; sPRESS ) 0.643)

log K ) 14.70((3.86) X-7 - 6.684((3.38) (12b)

(n ) 21; r ) 0.877; s ) 0.578; F ) 63.55;
Q2 ) 0.731; sPRESS ) 0.624)

log K ) 16.15((5.59) X-6 - 8.077((5.08) (12c)

(n ) 21; r ) 0.811; s ) 0.597; F ) 36.56;
Q2 ) 0.592; sPRESS ) 0.652)

log K ) 15.90((4.53) X-22 - 8.044((4.11) (13a)

(n ) 31; r ) 0.800; s ) 0.659; F ) 51.66;
Q2 ) 0.589; sPRESS ) 0.704)

log K ) 10.80((4.11) X-7 - 15.45((6.43) X-17 +
19.63((6.95) X-19 - 7.389((5.68) (13b)

(n ) 21; r ) 0.958; s ) 0.364; F ) 63.55;
Q2 ) 0.880; sPRESS ) 0.440)

log K ) 12.76((6.30) X-10 +13.53((5.43) X-23 -
17.25((6.49) (13c)

(n ) 21; r ) 0.881; s ) 0.497; F ) 31.05;
Q2 ) 0.713; sPRESS ) 0.562)
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internal predictivity of the best model is worse but the
external predictivity is better (eq 12c). In general, the
statistical parameters of eqs 13a-c correspond to those
of eqs 12a-c; the variables of eqs 13b,c are not signifi-
cantly interrelated (training set I: r2

7,17 ) 0.03, r2
7,19 )

0.20, r2
17,19 ) 0.25; training set II: r2

10,23 ) 0.07). Figure
2 shows the deviations between predicted and observed
log K values (pairwise SEAL alignments, all-properties
similarity matrices; eqs 13a-c).

The internal and external predictivities (Q2 and r2
pred

values) of all best regression models (up to three
variables), starting from the two different alignment
procedures and the different N × N similarity matrices,
are summarized in Table 4 (upper part).

A closer inspection of these results indicates that in
most cases hydrophobic, electrostatic, and steric as well
as weighted all-properties similarity matrices yield
comparable results. Only in one case a poor external
predictivity is observed (SEAL alignment, training set
II, hydrophobic similarity; r2

pred ) 0.204). For sufficient
stability of the derived models the best selection seems
to be a weighted combination of all properties.

For each analysis 100 runs with randomized y values
were performed, again searching for the best models
after re-ordering the y values in a random manner, to
prove the significance of the observed models and to
check the risk of chance correlations. For the eight
different analyses that include all steroids, the fit and

the internal predictivities of the real models were better
than any of the 100 scrambled models, indicating a
100% confidence level. For the training and test sets I,
the real models were better than 100% (internal pre-
dictivities) and 98-100% (external predictivities) of the
y-scrambled models. For training and test sets II, the
percentage rates for internal and external predictivities
were 98-100% and 95-100%. Thus, all fit and predic-
tivity parameters are statistically significant at a 95%
level.

For the all-property analyses, all statistical param-
eters of the real analyses were better than any of the
y-scrambled analyses. These numbers indicate a high
stability of the obtained results with respect to the risk
of chance correlations. An individual variable selection
may produce, by chance, slightly better results than
another variable selection (see discussion of eq 12b), but
no models with fortuitous combinations of irrelevant
variables are to be expected.

In addition to SEAL score-derived similarity matrices
S, also distance matrices D and covariance matrices C
were generated, starting from the different alignments
and using the similarity field calculations implemented
in CoMSIA.27 In general, comparable results are ob-
served for the fit of the whole data set and the training
and test sets I and II. Table 4 shows that some internal
predictivities are slightly worse than the corresponding
results from the SEAL score-derived similarity matrices

Figure 1. SEAL alignments of two pairs of steroids in three orthogonal views: upper diagrams, steroids viewed from above;
middle diagrams, steroids viewed from the front; lower diagrams, steroids viewed along the axis C-3 to C-17; (a) steroids 12 and
21 (regular superposition; SEAL score 0.9872); (b) steroids 9 and 12 (head-to-tail superposition; SEAL score 0.9296).
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S. Some models (especially those derived from single-
property-based similarity matrices) yield poor to unac-
ceptable external predictivities; a negative r2

pred value
indicates that the predictions by the model are worse
than taking the overall mean of the affinity values as
the predictions (resulting in r2

pred ) 0). In one case even
the all-properties-based external predictivity is much

worse than for most other analyses (SEAL alignment,
distance matrix; test set II, r2

pred ) 0.146). For those
models also the y-randomization runs indicate a lack
of statistical significance (i.e., percentage values smaller
than 95%).

Models from SEAL field-derived distance and cova-
riance matrices do not depend on the orientation of the
molecules in the box, in which the fields are calculated.
After a stepwise rotation of the steroids (see Methods),
identical models with identical statistical parameters
result after each individual rotation (numerical devia-
tions occur only in the third decimal places), indicating
that this method shows the desirable property of being
box orientation-invariant.

PLS models are often more stable than regression
models, especially if many highly interrelated variables
are involved, as is the case for such N × N matrices.
Thus, also PLS analyses were performed (Table 5). A
comparison of Tables 4 and 5 provides evidence that in
several cases inferior internal predictivities but better
external predictivities result from the PLS models, as
compared to the best regression models (Table 4). With
one exception (distance matrix, SEAL alignment, steric
field; test set I, r2

pred ) 0.395), all r2
pred values are larger

than 0.5, indicating a high degree of stability of the PLS
models, as compared to the regression models. Variable

a

b

c

Figure 2. Comparison of predicted and observed log K values
(pairwise SEAL alignments, all-properties similarity matrix,
best regression models): (a) all compounds (eq 13a); (b)
training and test sets I (eq 13b); (c) training and test sets II
(eq 13c); open circles, leave-one-out cross-validation predic-
tions; filled black circles, test set predictions. As in other
published analyses of this data set (cf. ref 37), compound 31
is an outlier; the difference of 1.9 units in the log K values of
compound 30 and its 9R-fluoro analogue 31 (Table 1) cannot
be explained without special assumptions on the influence of
the fluorine substituent on the binding affinities.

Table 4. Internal and External Predictivities of Regression
Models, Derived from Different Similarity Matrices, Using All
Compounds and the Training and Test Sets I and II (F
criterion for the selection of models; only up to three variables
were included in the models)

all test set Ia test set IIb

property
Q2

(variables)
Q2

(variables) r2
pred

Q2

(variables) r2
pred

SEAL Similarity Matrices S, Rigid Alignment
hydrophobic 0.785 (2) 0.785 (2) 0.684 0.545 (1) 0.655
electrostatic 0.687 (1) 0.846 (2) 0.534 0.677 (1) 0.736
steric 0.609 (1) 0.658 (1) 0.516 0.604 (1) 0.494
all propertiesc 0.658 (1) 0.731 (1) 0.454 0.592 (1) 0.750

SEAL Similarity Matrices S, Pairwise SEAL Alignments
hydrophobic 0.552 (1) 0.635 (2) 0.716 0.704 (3) 0.204
electrostatic 0.628 (1) 0.842 (3) 0.411 0.583 (1) 0.557
steric 0.683 (2) 0.710 (2) 0.447 0.545 (1) 0.439
all propertiesd 0.589 (1) 0.880 (3) 0.598 0.713 (2) 0.784

Distance Matrices D, Rigid Alignment
hydrophobic 0.701 (2) 0.664 (2) 0.752 0.508 (2) 0.823
electrostatic 0.601 (1) 0.860 (3) 0.530 0.198 (2) 0.795
steric 0.660 (1) 0.916 (3) 0.384 0.590 (1) 0.171
all properties 0.681 (2) 0.809 (3) 0.621 0.585 (2) 0.776

Distance Matrices D, Pairwise SEAL Alignments
hydrophobic 0.590 (2) 0.542 (2) 0.746 0.565 (3) 0.656
electrostatic 0.529 (1) 0.597 (1) 0.350 0.746 (3) 0.755
steric 0.697 (3) 0.705 (1) -0.114 0.228 (1) 0.559
all properties 0.634 (2) 0.721 (2) 0.401 0.329 (1) 0.146

Covariance Matrices C, Rigid Alignment
hydrophobic 0.752 (3) 0.699 (3) 0.705 0.554 (2) 0.755
electrostatic 0.666 (1) 0.842 (2) 0.378 0.597 (1) 0.770
steric 0.626 (1) 0.853 (3) 0.599 0.629 (1) 0.545
all properties 0.535 (1) 0.848 (3) 0.571 0.475 (1) 0.632

Covariance Matrices C, Pairwise SEAL Alignments
hydrophobic 0.422 (1) 0.593 (3) 0.680 0.433 (3) 0.146
electrostatic 0.601 (1) 0.651 (1) 0.481 0.561 (1) 0.662
steric 0.522 (1) 0.822 (3) -0.191 0.572 (1) 0.483
all properties 0.767 (3) 0.836 (3) 0.611 0.654 (3) 0.855

a Training set, steroids 1-21; test set, steroids 22-31. b Train-
ing set, steroids 1-12 and 23-31; test set, steroids 13-22. c Eqs
12a-c. d Eqs 13a-c and Figure 2.
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selection procedures did not significantly improve these
results, especially with respect to the external predic-
tivities.

If only the PLS analyses of the weighted all-properties
similarity matrices are considered (Table 5), the exter-
nal predictivities r2

pred are between 0.53 and 0.66 for
test set I and between 0.65 and 0.84 for test set II.
These are excellent results, as compared to earlier
CoMFA and CoMSIA studies, which produced test set I
predictivities between 0.3 and 0.4 (Table 2).

In principle, one could expect that good internal
predictivities (high Q2 values) should be indicative for
good external predictivities (high r2

pred values). To
analyze possible relationships between Q2 and r2

pred
values, the results of all PLS analyses of the steroid data
set were compared for the training and test sets I and
II (Figure 3). Each point in the diagrams corresponds
to one pair of Q2 and r2

pred values, resulting from
different PLS analyses (including one to five latent
variables), for all investigations listed in Table 5.

There is no relationship at all, a fact that was already
observed in prior investigations.25,54 High Q2 values can
be associated with very poor r2

pred values and vice versa.
The only possible conclusion is that external predictions
are more stable (i.e., most r2

pred values > 0.5) for the
optimum number of PLS components (black dots in

Figure 3) and that nearly all test set II predictivities
are better than to be expected from the relatively poor
internal predictivities of the models.

Besides all advantages of 3D quantitative similarity-
activity relationships, based on similarity matrices,
there is one disadvantage, as compared to CoMFA and
CoMSIA analyses: so far, no method could be developed
which allows the calculation of 3D contour maps. If
regression analyses are performed (e.g., eqs 12a-c and
13a-c), positive and negative coefficients of the similar-
ity vectors to certain molecules within the series can
be qualitatively interpreted, but the similarity coef-
ficients cannot be decoded, i.e., projected onto the
original property space of the molecules. In principle,
it should be possible to approximate contour maps from
the X variable regression coefficients (cf. eqs 12a-c and
13a-c), multiplied by the SEAL field coefficients of the
corresponding molecules, but this has not yet been
investigated in detail.

There is another problem, common to all quantitative
structure-activity relationships. Sometimes similar

Table 5. Internal and External Predictivities of PLS Models,
Derived from Different Similarity Matrices, Using All
Compounds and the Training and Test Sets I and II (sPRESS
criterion for the selection of PLS components; only up to three
PLS vectors included in the models)

all test set Ia test set IIb

property
Q2

(vectors)
Q2

(vectors) r2
pred

Q2

(vectors) r2
pred

SEAL Similarity Matrices S, Rigid Alignment
hydrophobic 0.667 (2) 0.631 (2) 0.709 0.579 (1) 0.759
electrostatic 0.679 (2) 0.750 (3) 0.515 0.634 (1) 0.675
steric 0.614 (1) 0.594 (1) 0.596 0.602 (1) 0.675
all properties 0.722 (1) 0.749 (1) 0.601 0.651 (1) 0.789

SEAL Similarity Matrices S, Pairwise SEAL Alignments
hydrophobic 0.619 (1) 0.559 (1) 0.781 0.468 (1) 0.730
electrostatic 0.637 (1) 0.602 (1) 0.645 0.640 (1) 0.683
steric 0.605 (2) 0.624 (1) 0.648 0.582 (1) 0.535
all properties 0.722 (2) 0.768 (2) 0.660 0.622 (1) 0.754

Distance Matrices D, Rigid Alignment
hydrophobic 0.722 (3) 0.590 (3) 0.777 0.373 (2) 0.644
electrostatic 0.737 (2) 0.806 (3) 0.502 0.641 (1) 0.781
steric 0.626 (1) 0.655 (1) 0.607 0.602 (1) 0.630
all properties 0.700 (1) 0.757 (1) 0.568 0.566 (1) 0.768

Distance Matrices D, Pairwise SEAL Alignments
hydrophobic 0.605 (3) 0.490 (2) 0.715 0.354 (2) 0.625
electrostatic 0.696 (1) 0.691 (1) 0.645 0.668 (1) 0.664
steric 0.573 (1) 0.766 (3) 0.395 0.525 (1) 0.645
all properties 0.695 (2) 0.725 (1) 0.584 0.536 (1) 0.651

Covariance Matrices C, Rigid Alignment
hydrophobic 0.650 (3) 0.526 (3) 0.701 0.458 (3) 0.685
electrostatic 0.694 (2) 0.701 (1) 0.576 0.607 (1) 0.754
steric 0.618 (1) 0.628 (1) 0.647 0.613 (1) 0.636
all properties 0.707 (2) 0.709 (1) 0.534 0.557 (2) 0.835

Covariance Matrices C, Pairwise SEAL Alignments
hydrophobic 0.453 (2) 0.306 (1) 0.657 0.293 (2) 0.556
electrostatic 0.655 (1) 0.650 (1) 0.638 0.647 (1) 0.680
steric 0.586 (2) 0.491 (1) 0.507 0.494 (1) 0.539
all properties 0.748 (3) 0.723 (2) 0.659 0.612 (2) 0.762

a Training set, steroids 1-21; test set, steroids 22-31. b Train-
ing set, steroids 1-12 and 23-31; test set, steroids 13-22.

a

b

Figure 3. Relationships between Q2 values of the training
sets and r2

pred values for the test sets. All 24 analyses of Table
5, with one to five latent variables in the PLS models (120
pairs of values), are included in the diagrams for the test and
training sets I (a) and II (b); filled black circles, best models,
selected by the sPRESS criterion. The dashed lines indicate
identical Q2 and r2

pred values, points in the upper left area
indicate better r2

pred values, and points in the lower right area
indicate better Q2 values. Whereas there is no relationship
between the Q2 and r2

pred values, most r2
pred values of the test

set II are better than the cross-validated Q2 values of the
training set II.
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molecules have very different biological activities, caused
by different ligand-protein interactions, different bind-
ing modes, or changes in the mode of action.29,55 It will
be a challenge for the future to extend 3D QSiAR also
to such data sets.

Conclusions

It seems to be trivial that similar molecules show
similar biological activities. Surprisingly enough, simi-
larity matrices have not been used to derive QSARs
until 1991.30 Even then, only some investigations have
been performed, and no pairwise alignments, instead
of a common alignment of all molecules within a data
set, have been performed. Pairwise superpositions are
independent of all other alignments; thus, molecule 3
has no influence on the superposition of molecules 1 and
2, etc. This should offer a special advantage in the
analysis of data sets where some compounds may have
different conformational preferences or different binding
modes. In a pairwise alignment procedure, such mol-
ecules do not cause any perturbation of the alignment
of all other molecules and the similarity scores derived
from these alignments. SEAL score-derived similarity
matrices S do not depend on boxes and grids. Even if
field-based N × N distance matrices D and covariance
matrices C are calculated, the resulting analyses are
invariant to box translation or rotation.

Considering different alignments, different matrices,
and regression and PLS analyses, the following conclu-
sions can be drawn from the results presented in Tables
4 and 5:

(1) There are no significant differences between a
common alignment of all molecules and a pairwise
SEAL alignment; this may be typical for rigid molecules
as the steroids are. For flexible molecules, pairwise
alignments might be more appropriate and could offer
advantages.

(2) Weighted all-properties similarity matrices yield
more stable regression models than models based on
individual properties, especially if field-derived distance
or covariance matrices are used; some individual prop-
erty-derived distance and covariance matrices yield
highly unstable results.

(3) In general, regression analyses produce models
with good internal predictivities and fairly good external
predictivities.

(4) PLS analyses tend to produce more stable models,
with inferior internal predictivity but better external
predictivity than regression analyses; there seem to be
no significant differences between SEAL score-derived
similarity matrices S, distance matrices D, and covari-
ance matrices C.

(5) The external predictivities of all-properties-based
PLS models, using either similarity matrices S, distance
matrices D, or covariance matrices C, are much better
(r2

pred ) 0.53-0.84; Table 5) than published CoMFA and
CoMSIA results (r2

pred ) 0.31-0.40; Table 2).
(6) Variable selection did not produce better PLS

models.
This investigation confirms also the crucial depen-

dence of test set predictivities on the training set
selection and the lack of a relationship between internal
and external predictivities:

(1) Internal predictivities are most often better for
training set I than for training set II, whereas the
external predictivities for test set II are nearly always
better than for test set I. The most important conclu-
sion from this observation is that a broad variety of
structural features should be covered by the training
set molecules in order to allow reliable predictions.

(2) No conclusions on the test set predictivity can be
derived from a mere consideration of the training set
statistical parameters, at least if leave-one-out cross-
validation is performed; more reliable predictions may
result from larger data sets, by performing cross-
validation in groups. Only a rigorous limitation of the
number of variables or PLS vectors produces stable
models and reliable external predictions, at the expense
of the quality of fit and internal predictivity in the cross-
validation runs.

Further data sets should be investigated to demon-
strate scope and limitations of 3D quantitative similar-
ity-activity relationships, based on pairwise alignments
and correlation of the biological data with SEAL-derived
similarity matrices S, D, or C.

Acknowledgment. Stimulating discussions with
Jens Sadowski and Ute Abraham are gratefully ac-
knowledged. Several other colleagues contributed by
making manuscripts available before publication. Criti-
cal comments of an unknown reviewer helped to im-
prove the quality and statistical validity of the results.

Note Added in Revision. After submission of this
manuscript, a paper on three-dimensional quantitative
structure-activity relationships from molecular simi-
larity matrices and genetic neural networks (GNN) was
published.56 Using the steroid data set, better rFIT and
Q2 values were obtained for the whole data set; the
results were justified by cross-validation and y random-
ization runs. However, this study has two limitations:
first, the Q2 values are no independent measure of the
validity of the models because they were used as the
fitness criterion in the GNN variable selection runs;
second, no training and test set selections were per-
formed to check the external predictivities of the derived
models.
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(53) Wallimann, P.; Marti, T.; Fürer, A.; Diederich, F. Steroids in
Molecular Recognition. Chem. Rev. 1997, 97, 1567-1608.

3D QSiAR from SEAL Similarity Matrices Journal of Medicinal Chemistry, 1998, Vol. 41, No. 14 2563



(54) Novellino, E.; Fattorusso, C.; Greco, G. Use of Comparative
Molecular Field Analysis and Cluster Analysis in Series Design.
Pharm. Acta Helv. 1995, 70, 149-154.

(55) Kubinyi, H. Similarity and Dissimilarity. A Medicinal Chemists
View. In 3D QSAR in Drug Design. Volume 2. Ligand-Protein
Interactions and Molecular Similarity; Kubinyi, H., Folkers, G.,
Martin, Y. C., Eds.; Kluwer/ESCOM: Dordrecht, 1998; pp 225-
252.

(56) So, S.-S.; Karplus, M. Three-Dimensional Quantitative Structure-
Activity Relationships from Molecular Similarity Matrices and
Genetic Neural Networks. 1. Method and Validations. J. Med.
Chem. 1997, 40, 4347-4359.

JM970732A

2564 Journal of Medicinal Chemistry, 1998, Vol. 41, No. 14 Kubinyi et al.


